Relation génotype-phénotype dans les destinées développementales de six cellules chez *Caenorhabditis elegans*

Marie-Anne Félix ENS Paris Lewontin's depiction of evolution on a genotype-phenotype map

Adding environment and phenotype construction

Here • represents an individual or isogenic population and corresponding probability distributions

Genotype-Environment / Phenotype Variational relationship in experimental biology and in evolution

Variation in phenotype of interest

C. elegans cell lineage

J. Sulston et al. 1977-83

Adult hermaphrodite: 959 somatic cells

XX Hermaphrodites (+ X0 males) Isogenic lines

C. elegans vulval precursor cell fate patterning

Quasi-invariant C. elegans cell lineage J. Sulston et al. 1977-83

.. or 958

- Sensitivity to noise and environmental variation
- Evolution in *C. elegans* and *Caenorhabditis* genus
- Sensitivity to random mutation

• Sensitivity to variation in signaling pathways

Robustness of the vulva system in different environments Experimental environments

Abbreviations G: Generation NGM: Nematode Growth Medium

The fate of only one of the six cells, P3.p, is highly sensitive to **stochastic** and **environmental** variation

Sensitivity to stochastic and environmental variation in different vulva traits

				decreasing sensitivity to environmenta variation
Class	D	С	В	A
	P3.p fate	P4.p/P8.p fate	central fate on P5.p or P7.p complete vulva	incomplete vulva

- Sensitivity to noise and environmental variation
- Evolution in *C. elegans* and *Caenorhabditis* genus
- Sensitivity to random mutation

Sensitivity to variation in signaling pathways

Evolution in the Caenorhabditis genus

P4.p P5.p P6.p P7.p P8.p Evolutionary invariant whole genus

Evolutionary trends in vulval traits

Phenotypic evolution

Respective roles of natural selection, historical contingency, and developmental bias?

Developmental constraint / bias

Analogy with the Spandrels of San Marco S. J. Gould and R. Lewontin, 1985

Contrast:

1. The spandrels were designed to fit the four evangelists

2. The spandrels are the necessary geometric consequence of a dome on arches

Developmental constraint / bias

- Sensitivity to noise and environmental variation
- Evolution in *C. elegans* and *Caenorhabditis* genus
- Sensitivity to random mutation

Sensitivity to variation in signaling pathways

Mutation accumulation lines 4 starting wild genotypes

C. Baer & M. Lynch

Rate of directional evolutionary change of different vulva variant types

Per generation change in variant phenotype frequency compared to control lines (R_m)

P3.p fate varies upon mutation much more than P4.p (and P4.p/P8.p more than other cell fate changes)

Braendle, Baer and Félix PLoS Genetics 2010

Mutational variance of different vulva variant types

P3.p fate varies upon mutation much more than P4.p (and P4.p/P8.p more than other cell fate changes)

Braendle, Baer and Félix PLoS Genetics 2010

Conclusion Mutational impact on Vulva Development

Different vulva traits vary at different rates upon mutation

• The system is under stabilizing selection (it degrades in mutation accumulation lines)

This relative mutational variance evolves:
=> may partially explain evolutionary trends.

Contrast:

P3.p Sensitive

to noise, environmental variation and random mutation

P(4-8).p Relatively robust

to noise, environmental variation and random mutation

Cryptic variation accumulates

Evolutionary variation

in *C. elegans* and the *Caenorhabditis* genus

Neutral???

Evolutionary stasis in the *Caenorhabditis* genus

Stabilizing selection (comparison mutation accumulation vs. wild isolate variation)

What causes the difference in mutational variance among Pn.p cells?

- A highly mutable locus (e.g. microsatellite repeats) affecting P3.p?

Molecular origins of rapid and continuous morphological evolution PNAS 2010

John W. Fondon III* and Harold R. Garner

Runx2 with microsatellite length variation correlation with morphology in dogs

 A large mutational target affecting P3.p? many loci with a phenotype

Each mutation maps to a different genomic region 4/5 are not in genes known to be involved in P3.p fate specification

Fabrice Besnard

A large mutational target for P3.p

- A large mutational target affecting P3.p many genetic loci with a phenotype

- Sensitivity to noise and environmental variation
- Evolution in *C. elegans* and *Caenorhabditis* genus
- Sensitivity to random mutation

Sensitivity to variation in signaling pathways:
Explaining the degree of sensitivity to random mutation

Experimental modulation of Wnts

egl-20 and cwn-1 /wnts

Non-linearity in

The Relationship Between Gene and Phenotype

J. M. RENDEL

J. Theoret. Biol. (1962) 2, 296-308

x axis was not measurable
⇒ Rendel uses a replotting of the y axis phenotypic scale based on the phenotypic distribution (probit)
= "MAKE" value meant to represent an intermediate substance activity

How robust is the system to variation in gene dosage of the upstream inducer (LIN-3/EGF)?

3 induced cells

The vulva system is robust to a 4-fold variation in mean *lin*-3 mRNA level

Barkoulas et al. Dev Cell 2013

P3.p in a dose-sensitive region of the Wnt gradients

P(4-8).p in a dose-insensitive region of the LIN-3 gradient

Knowledge of the developmental system helps understand the sensitivity to various input variations, including random mutation.

The mutational variance matches the evolutionary trend in Pn.p cell fate evolution.

Many thanks!

Marie Delattre P3.p natural variation 2001

Jean-Baptiste Pénigault t Wnt sensitivity 2011

Michalis Barkoulas EGF dose-response 2013

Fabrice Besnard MA line genomics and genetics To be written

Mutation accumulation lines

C. Baer & M. Lynch, U. Florida & Indiana

Worm natural collection and phylogeny

K. Kiontke & D. Fitch, NYU M. Ailion, U. Wash M. Rockman, NYU C. Braendle, CNRS-Nice, and many other samplers

The high mutational variance of P3.p is <u>not</u> due to a highly mutable locus but to **mutations in a variety of loci**

Trait plasticity versus invariance at different levels of the genotype-phenotype map

