

Méta-analyse de la Impact des vers de terre sur la minéralisation du carbone des sols

Patricia Garnier¹, Myriam Germain¹, David Makowski², Michel Bertrand², Mickael Hedde¹ Patricia.garnier@inra.fr Bertrand Guenet³, Claire Chenu¹, Pierre Benoit¹, Sabine houot¹, Céline Pelosi¹, Christine Hatte³, Eric Blanchart⁴, Sébastien Barot⁵

¹UMR EcoSys, ²UMR AGRONOMIE, ³UMR LSCE, ⁴UMR ECO&SOL, ⁵UMR IEES

Background

Le sol est fortement transformé par les organismes vivants. La macrofaune joue indirectement le rôle de catalyseur de minéralisation du carbone du sol car ses galeries permettent le passage de lœau et de lœir ce qui favorise la dégradation microbienne (Bertrand et al.). Mais elle peut également protéger la matière organique de la dégradation dans ces turricules (Angst et al.). Pour simuler et évaluer ligmpact des changements dousage des terres sur les flux biogeochimiques, il est impératif de prendre en compte la macrofaune.

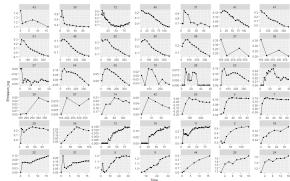
Objectif

Ce projet a pour objectifs :

-de faire une meta-analyse à partir des résultats expérimentaux qui traitent de læffet des vers de terre sur la minéralisation du carbone organique des sols

-produire un modèle simple capable de prendre en compte ce processus

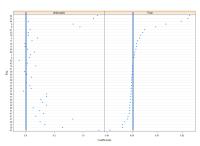
Step 1: Construire une base de données


- 1- Recherche de article: 83 articles
 - Avoir traitement EW et CTRLDans le sol

 - o Avoir le CO2 cumulé ou instantané
- 2- Tri des articles: 17 articles, Nbre de traitements: 42
 - Avoir au moins 3 points de CO2 en dehors du point 0 Tous les VdT sauf Eisenia_foetida

 - Connaitre toutes les autres variables : densité, type de VdT, T, teta, MOF
- Extraction de données, calculs (construction d⊕n tableau. Variables d⊕ntrée)
- Choix dBun variable réponse : LOG(CO₂-EW/CO₂-CTRL)

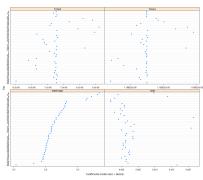
Fig 1. Présentation du Corpus Minéralisation du carbone avec et sans Verre de Terre Fichier Excel: 17 publications, 42 expérinces, 75 colonnes: durée, type de Vdt, T, CO2 avec et sans Vdtí et calcul de la variables de sortie : LOG(CO2-EW/CO2-CTRL)



- pas døallure générale commune à toutes les courbes
- plutôt positive indiquant une augmentation de la minéralisation avec les EW

Step 2: Analyse des données

Modèle Linéaire/ temps


LOG(CO2-EW/CO2-CTRL)=Intercept+A*Temps

Variable	P value mixte	P value simple	
Intercept	0.0001	< 2e-16	
Temps	0.1039	3.03e-07	
Densité vdt	0	< 2e-16	
Variable	Valeur coefficient mixte	Valeur coeffcient simple	
Intercept	0.18324883	0.2031	
Temps	0.00127016	-0.00066	
Densité vdt	0.00388865	0.0045599	

Modèle Quadratique/ temps

LOG(CO2-EW/CO2-CTRL)=Intercept+ A*Temps B*Temps2+C*Temps3

	rixed effects filoder	wiiked wiodei
intercept	1.872e-01***	1.543834e-01***
Time	-1.288e-04	2.686408e-03**
Time ²	-5.140e-06	-7.234776e-06***
Time ³	1.164e-08	1.188625e-08***
Density	4.568e-0***	3.810911e-03***

Step 3: Comparaison des modèles

	Effet fixe		Effet aléatoire	
	AIC	BIC	AIC	BIC
Sans effet du temps	404	412	-897	-884
Modèle lineaire	366	379	-1255	-1234
Modèle quadratique	358	375	-1256	-1226
Modèle cubique	357	379	-1263	-1225
+densité	17	43	-1290	-1247
+ VdT	341	376	-1259	-1207
+OM	195	268	-1252	-1162

Conclusion

- ➤ les Vdt ont en effet positif sur la minéralisation (LOG(CO2-EW/CO2-CTRL)>0)
- La forme des courbes est très variable entre études ce qui montre que les bilans de séquestration et démission de C sont très variables
- Cet effet des Vdt est fonction du temps et de la densité des Vdt
- > la variabilité inter étude est a prendre en compte et donc les modèles à effet aléatoire sont meilleurs que les modèles à effet fixe contrairement à Lubbers et al. 2013
- Le modèle cubique arrive mieux pas à capturer la complexité des données
- ➤ Quœst-ce que løon peut préconiser aux modélisateurs pour prendre en compte les vdt

References

- 1. Angst. 2017. Geoderma. http://dx.doi.org/10.1016/j.geoderma.2016.11.017.
- 2. Willem van Groenigen 2014. Scientific Reports. DOI: 10.1038/srep06365
- 3. Lubbers et al. 2013. Nature Climate ChangeONLINE: DOI: 10.1038/NCLIMATE1692
- 4. Bertrand et al. 2015. Advances in Agronomy.